Symphony OCLC Scripts
This document provides an introduction to the scripts and processes used by the University of Alberta Libraries (UAL) to maintain their records in the OCLC WorldCat database. UAL has graciously agreed to share this information with Alberta libraries. Please note that applying them to any particular situation will require customization and testing to ensure there are no unintended results.
OCLC Extract Script
The first line in the script sets the program which will be used to execute the commands. This script uses the Korn shell (/bin/ksh). This script may or may not be compatible with other shells, including sh and bash.
The comments at the beginning of the script are a good practice, and are highly recommended.
#!/bin/ksh
Script that extracts bib records created yesterday and sends the files to
OCLC for inclusion to WorldCat
written by Audrey Holubitsky Sept 2004
script that extracts created records for
a specific time period sent to OCLC to meet contract obligations
#
Rewritten in 2009 to accommodate changes for worldcat
###
The next section documents who made what changes to the script and why. For brevity’s sake I have removed all but the last two modifications.
MODIFICATIONS

Mar 2013 FOD,FODRD,FODGM,FODKEY,FODGP no longer excluded Ticket #xxxx
Sep 2012 exclude CAT2 EEBSTC,EEBTT,EEBWING by request of Jane Doe
<snip>
##
Set up required Symphony environment variables.
to set sirsi environmental varibles
##
config=/u/sirsi/Unicorn/Config
echo starting program oclc_extract.script
. ${config}/environ
for env_var in `cat ${config}/environ | awk -F'=' '{print $1}'`
do
 export ${env_var}
done
Set up date variables.
##
set up variable for the program
##
date >> extract.log
Dafter=`cat Xstartdate`
Dbefore=`date +%Y%m%d`
day=`date +%y%m%d`
The following section uses multiple API calls to select items which were added or modified in the date range. Following calls further restrict the selections using location and collection.
###
get items records that do not contain
in ITEMCAT2
ECCO=Eighteenth Centry Collections Online
MOML=Making of Modern Law
EEBO=Early English Books Online
GERRITSEN=gerritsen collection
SAFARI-Safari Technical Books Online
FOD,FODGM,RODRD,FODKEY=Film on Demand
###
#echo "\t\t Records selected ON or after $Dafter and before $Dbefore " >>extract.log
selcatalog -r~"<$Dafter<$Dbefore" -oC |selitem -iC -oI >tmp_moditems
selitem -oI -f~"<$Dafter<$Dbefore" >tmp_newitems 2>>extract.log
wc tmp_moditems >>extract.log
wc tmp_newitems >>extract.log
cat tmp_moditems >>tmp_newitems
#echo "Getting itemecords with OCLC codes and only select itemcat2 >> extract.log
cat tmp_newitems |selitem -iI -oI -y~COVENANTGN,COVENANTMH,AHS_RAH,AHSGLENRSE,CROSS,AHS_AHE,AHS_STURG,AHS_CENTEN,AHS_REDDR,UATECHSERV,VANGUARD >tmp_itemcreate 2>>extract.log
#
cat tmp_itemcreate |selcallnum -iK -p~ORDER -oKS >notOrder 2>>extract.log
#
cat notOrder| selitem -iI -oC -g~EEBSTC,EEBTT,EEBWING,ECCO,MOML,EEBO,GERRITSEN,SAFARI,PDA-2011,NFB-E -l~IN_PROCESS,ON_THE_FLY,ON-ORDER,RESERVES,MUSIC_RES,ILL,ILL_,UNKNOWN >tmp_catkey 2>>extract.log
This sharonKeys file provides a method for manually requesting keys on items that would not normally be exported.
add keys from sharonKeys - keys that were requested that do not have new items
cat sharonKeys |selcatalog -iC -oC 2>/dev/null >>tmp_catkey
empty the file
rm sharonKeys
touch sharonKeys
Ongoing selection based on item title.

Remove cat keys that have title of REQUIRED FIELD so they are not sent
##
cat tmp_catkey |selcatalog -iC -e245 -oCe >tmp_allcatkeys 2>>extract.log
grep -v "**REQUIRED FIELD**" tmp_allcatkeys >tmp_goodrecs
cut -d"|" -f1 tmp_goodrecs >tmp_daily_catkeys
sort the file and only keep unique catalogue records
cat tmp_daily_catkeys | sort | uniq >tmp_sorted_adds
wc tmp_sorted_adds 2>>extract.log
Up until this point, the script has been selecting the records to be extracted for sending to OCLC. The following lines use the tmp_sorted_adds files to dump records from the catalogue.
##
prints the records in marc format to a file to export
the -ku is needed for oclc since the dump of 2009 by JH used this.
needed to match records in OCLC.
cat tmp_sorted_adds |catalogdump -ku -om >adds_extractmarc.oclc 2>>extract.log
The following lines print the records in alternate formats. The hash symbol at the beginning of the line comments the line out so it is not executed.
prints the bib and holdings records in marc format to send to National Library
###cat tmp_sorted_adds | catalogdump -l"ALL_MARCS" -om >adds_extractmarc_hold.mara
prints the records in ascii format...human readable
#cat tmp_sorted_adds |catalogdump -ku -of >adds_extractascii.oclc
Rename the file containing the extracted records to include the date. Get record counts by using wc and cut.
#rename the marcextract file to something more meaningful
mv adds_extractmarc.oclc DATA.D$day
###mv adds_extractmarc_hold.mara MARADATA.D$day
wc tmp_sorted_adds >addcount
RBFcount=`cut -c4-10 addcount`
echo "RBFcount=$RBFcount" >>extract.log
Check for the data file. If it does not exist, email appropriate staff to alert them to the problem.
if [[-s DATA.D$day]] then
 echo "DATA.D$day exists and is non-empty" >>extract.log
else
 echo "DATA.D$day is empty or missing. Exiting..." >>extract.log
 translate extract.log >extract.txt
 mailx -s"AutoBibExtract OCLC DATA.D$day is empty or missing" person1@ualberta.ca,person2@ualberta.ca < extract.txt
 exit
fi
Set the last date run, and export variables needed for other programs.
set last Date Run
echo `date +%Y%m%d` >Xstartdate
#
###
export variables to be used in other programs and edit label.file
##
export RBFcount
export day
date >> extract.log
echo "Modifying LABEL File" >>extract.log
###
Run Third Script to Modify Label file
##
#
cd /u/sirsi/NonWFcustom/OCLC
${wrkdir}/ModifyLabel.script
exit

Merge Records
UAL uses a Perl script to take the cross-reference report from OCLC and merge the OCLC number into the 035 tag of the appropriate records.
The first line specifies the location of the Perl executable. This line may need to be edited depending on the location of the program in the local system.
#!/u/sirsi/Unicorn/Bin/perl
[bookmark: _GoBack]The next section checks to see if there is a file left over from a previous run. If there is, it gets deleted.
if (-e "appended.CXREF")
 {
 system("rm appended.CXREF");
 }
The @filelist array is populated with all files matching R*CXREF. That array is processed to create the appended.CXREF file. As each file’s contents are appended to appended.CXREF, the file is moved to the Downloads directory.
@filelist = `ls R*CXREF`;

foreach $filename (@filelist)
 {
 chomp($filename);
 system("cat $filename >> appended.CXREF");
 #print "$filename\n";
 system("mv $filename Downloads");
 }
Attempt to open the appended.CXREF file. If it fails, print an error message and stop.
open(KEYS,"appended.CXREF") || die "No Downloads or no appended.CXREF: $!\n";
Get a count of the number of records in the appended.CXREF file using wc, and print an information message about the number of records.
$recs = `wc -l appended.CXREF`;
chomp($recs);
$recs =~ s/appended.CXREF//;
$recs =~ s/ //g;
print "The total number of records sent from OCLC is $recs\n";
Open a data file for output.
open(DATA,">data");
The next sections are a bit more involved, and utilize a number of loops and decision points. I’m not going to try to dissect each command, but rather describe the overall flow.
While there are still lines in the appended.CXREF file, read each line in and split it into the local catalogue key and the OCLC number. Measure the length of the OCLC number.
while($line=<KEYS>)
 {
 chomp($line);
 ($catkey,$oclc) = split(/\t/,$line);

 $catkey =~ s/^u//;
 $oclc =~ s/ //g;
 $len = length($oclc);
Please note that there are a number of possible formats for OCLC control numbers. The variations include placing the number in different MARC tags (001, 035 or 7xx), different prefixes (ocm, ocn, on, or (OCoLC)) and numbers both with and without padding zeroes (e.g., 00001234 versus 1234).
If the OCLC number is less than 8 characters, pad with the requisite number of zeroes. Prepend the appropriate prefix to the number, or fail. Finally, print the catalogue key and the final form of the OCLC number to a line in the data file. As mentioned above, the loop continues while there are lines in the cross-reference report.
 if ($len < 8)
 {
 $pad = 8 - $len;
 $padOclc = $oclc;
 for($i=0; $i < $pad; $i++)
 {
 $padOclc = "0$padOclc";
 }
 $prefixOclc = "ocm$padOclc";
 }
 elsif ($len == 8)
 {
 $prefixOclc = "ocm$oclc";
 }
 elsif ($len > 8)
 {
 $prefixOclc = "ocn$oclc";
 }
 else
 {
 print FAIL "failed - $line\n";
 }
 print DATA "$catkey|$prefixOclc|\n";
 }
Close the data file now that it is no longer being modified.
close(DATA);

Create an array by sending the data file contents through the selcatalog program. I believe the selcatalog program selects records from the Symphony database, but I have not had the Symphony API training.
The next four lines create a number of file handles for use when parsing the array.
@data035 = `cat data | selcatalog -e035 -iC -oCSe 2>/dev/null`;

open(CAT,">catkeys");
open(OF,">overflow");
open(GOOD,">alreadyDone");
open(ADD035,">add035");
The nest line sets up a counter to keep track of the number of records that will need to be processed.
$count = 0;
For each line in the array, split the line into appropriate variables, and compare the OCLC number with the existing tag 035. If it matches, print an information string into the “alreadyDone” file. If it doesn’t match, increment the counter. If the counter has reached 20,000, add the appropriate lines to the overflow file. If not, add the appropriate lines to the catkeys and add035 files.
Once all lines are processed, close the file handles.
foreach $line (@data035)
 {
 ($catkey2,$oc,$tag035) = split(/\|/,$line);
 if ($oc eq $tag035)
 {
 print GOOD "$line";
 }
 else
 {
 $count++;
 if ($count > 20000)
 {
 print OF "$catkey2\n";
 }
 else
 {
 print CAT "$catkey2\n";

 print ADD035 "*** DOCUMENT BOUNDARY ***\n";
 print ADD035 "FORM=MARC\n";
 print ADD035 ".035. |a$oc\n";
 print ADD035 ".1003. |a$catkey2\n";
 }
 }
 }
close(CAT);
close(ADD035);
Set up a variable to hold today’s date as a string.
$dt = `date '+%m%d%H%M'`;
chomp($dt);
If there were more than 20,000 records, save the overflow file and send an alert.
if ($count > 20000)
 {
 print "Too many catkeys, $count, 20,000 sent to Adutext - the rest saved as catkeys.$dt\n";
 system("cp overflow catkeys.$dt");
 system("echo 'ALERT - Too many catkeys' >alert.txt");
 }
else
 {
 print "Sending $count catkeys to touchkeys\n";
 }
Send the contents of the catkeys file to the touchkeys program.
system("cat catkeys | touchkeys 2>touchkeys.log");
Send the contents of the add035 file to the catalogmerge program. Use other programs to provide meaningful log entries.
system("cat add035 |catalogmerge -aMARC -bc -if -t035 -r -d >merge.keys 2>merge.log");
system("grep -v **Entry merge.log |translate >mergeTrans.log");
print "\n";
system("cat mergeTrans.log");
print "\n";
open(MER,"mergeTrans.log");
system("touch send2sharonYES");
while (<MER>)
 {
 chomp;
 if ($_ =~ / 0 catalog record/ && $_ =~ /in error/)
 {
 system("rm send2sharonYES");
 last;
 }
 }
system("date");

Page 4 of 7

